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Abstract—Building an efficient and accurate pixel-level label-
ing framework for large-scale and high-resolution satellite im-
agery is an important machine learning application in the remote
sensing area. Due to the very limited amount of the ground-
truth data, we employ a well-performing superpixel tessellation
approach to segment the image into homogeneous regions and
then use these irregular-shaped regions as the foundation for
the dense labeling work. A deep model based on generative
adversarial networks is trained to learn the discriminating
features from the image data without requiring any additional
labeled information. In the subsequent classification step, we
adopt the discriminator of this unsupervised model as a feature
extractor and train a fast and robust support vector machine to
assign the pixel-level labels. In the experiments, we evaluate our
framework in terms of the pixel-level classification accuracy on
satellite imagery with different geographical types. The results
show that our dense-labeling framework is very competitive
compared to the state-of-the-art methods that heavily rely on
prior knowledge or other large-scale annotated datasets.

Keywords—Superpixel segmentation, unsupervised feature
learning, generative adversarial networks, remote sensing

I. INTRODUCTION

The rapid development and deployment of remote sensing
instruments has resulted in huge corpora of large-scale satellite
images with very high resolution (VHR). This generates an
urgent need to efficiently and accurately understand these
massive datasets. In recent years, we have seen many efforts
made to develop an automated computational architecture for
densely labeling such satellite imagery at the pixel level and
providing the semantic interpretation of different areas, such as
the human buildings, agricultural fields, primitive forests and
bodies of water. Fig. 1 shows an example that contains the
common types of terrain objects. The filled circles represent
the data labeled by the remote sensing experts.

Although building a successful dense-labeling framework
looks interesting and promising, we should point out the
difficulties and challenges that we are facing, because the
following issues may not be well addressed:
• First, we are often provided a very limited number of

ground truth points (in terms of the pixel coordinates)
that are labeled by the experts. Compared to the actual
scale of the satellite images which consists of millions
or a few billion pixels, the labeled data only occupies a
small proportion and machine learning approaches that
only work with a small number of labels is feasible.

• Second, we should realize that the expert-labeled point
is more likely to represent several pixels or large ho-
mogeneous regions rather than a single “independent”
pixel. Thus, the local region homogeneity needs to be
considered and many of the pixel-based image processing
approaches cannot deal with this information.

• Third, due to the lack of training samples, we are unable
to employ the effective supervised learning approaches to

This work is partially supported by NSF IIS 1743050.

Fig. 1: An example of a large-scale VHR satellite image
captured from Rio, Brazil. The solid circles show the expert-
labeled points given in terms of the pixel coordinates. Different
colors represent different labeling categories, such as slum
(red), urban (magenta), forest (green), beach sand (yellow)
and sea (blue).

obtain the discriminating representations from the image.
Prior knowledge and experience still play a key role in
extracting the high-level semantic features, which creates
additional uncertainty regarding the rarely seen objects.

Some of the previous works have addressed the first two
issues above by employing a superpixel tessellation approach
to segment the large-scale image into coherent regions that are
used as the basic labeling unit. This processing step can sig-
nificantly reduce the computational complexity in the overall
labeling work and help to fill in the quantity gaps between
the labeled and unlabeled data. Moreover, the segmentation is
also able to better capture the coherent local structure of the
terrain objects, so the classification quality can be improved
on the pixels near the boundaries between the two different
neighboring objects.

Furthermore, we notice that recent unsupervised learning
approaches have made huge progress on the feature learning
and selection tasks as the deep network structure becomes
widely adopted. Generative adversarial networks (GAN) are
the most promising methods to learn the deep representa-
tion since they do not require any labeled information. This
advantage makes the GAN a great choice for the feature
learning step in the dense-labeling framework, because we
have a tremendous volume of unlabeled data (from the large-
scale VHR images) to train a robust deep model without
triggering the overfitting problem. In this way, we can address
the third issue without relying on any additional knowledge
or experience from the remote sensing field.

The main contribution of this paper is summarized in the
following aspects:
• We effectively adopt superpixel segmentation to leverage

the limited amount of expert-labeled points and improve
the computational efficiency of our framework.



• This is the first successful attempt at using GANs in the
dense labeling framework for large-scale VHR satellite
images. Our approach is more accurate than many ex-
isting algorithms and competitive to the state-of-the-art
deep learning models where we have to perform transfer
learning from other well-annotated datasets.

• To the best of our knowledge, this is the first time the
GAN scheme has been successfully integrated with the
transfer learning method. We use this approach to further
improve the recognition ability and achieve good results
on our VHR imagery.

We organize the rest of the paper as follows. In Section II,
the related works are briefly introduced. Our dense-labeling
framework is described in Section III. We report out exper-
imental results in Section IV and present the conclusions in
Section V.

II. RELATED WORK

Many effective low-level descriptors and middle-level fea-
tures, such as color histogram, normalized difference vegeta-
tion index (NDVI), scale-invariant feature transform (SIFT),
bag of visual words (BoVW) and semantic-spatial matching
(SSM) [1], play an important role in the recent dense labeling
framework for large-scale images. Vatsavai [2] proposed a
multiple instance approach based on the low-level remote
sensing features. The neighboring pixels were modeled with a
Gaussian distribution in order to capture the complex spatial
patterns. Sethi et al. [3], [4], [5] also took the advantages of
these descriptors by concatenating them in to a long vector
and then use it as the representational features. They assigned
a set of reasonable weights to the descriptors and made their
framework perform well on the global-scale application.

Furthermore, the deep learning algorithms such as the
convolutional neural networks (CNN) have been developed
very fast in recent years. They are able to learn the useful
high-level semantic features from the images and achieve
the-state-of-the-art classification performance in many remote
sensing tasks. It overcomes the drawback of the handcrafted
feature selection process, which was completely relying on
the human knowledge in the area of expertise. For example,
[6], [7] have demonstrated the great advantages of CNN
for the hyperspectral image classification and semantic scene
recognition respectively.

On the other hand, we should note that all these CNN-
based methods need a huge amount of labeled data to train a
robust deep model. It imposes an impractical requirement for
designing a dense labeling framework because in most situa-
tions, we are only available to a small fraction or even very
limited number of the labeled samples. To this end, instead of
constructing the deep learning model from scratch, et al. [8]
borrowed the successful CNN models that are pre-trained from
a huge everyday object recognition dataset. They removed the
last fully-connected layer and treated the remaining network
as a fixed feature extractor. This transfer learning method
retained the strong generalization ability of the deep features
and could perform even better by concatenating the features
from multiple CNN models.

Moreover, the unsupervised deep learning algorithms are
seen as a more promising method since they can learn the
maximum effectiveness to reconstruct the original data without
using any labeled information. Xu et al. [9] presented a stacked
sparse autoencoder framework to learn the high-level features
of the input raw data. Better representation can be obtained

comparing to the conventional feature reduction methods like
the principal component analysis. The generative adversarial
networks (GAN) [10] is another excellent choice to learn
the unsupervised features, because its generator can provide
large quantities of the fake data from the random vectors,
and thus we only need to provide the real data from the
real satellite imagery to train its discriminator. Radford et
al. [11] introduced the deep convolutional GANs (DCGAN)
to bridge the gap to the success of supervised learning by
utilizing the CNN architectures. Their trained discriminators
showed competitive performance on the bedroom, face and
natural object datasets. Lin et al. [12] presented a multi-
layer feature-matching GAN (MARTA-GAN) to avoid the
checkerboard artifacts in DCGAN and generate the fake (or
synthetic) images with higher resolution. A multi-feature layer
was added to the architecture of DCGAN so the perceptual loss
could be combined with their feature matching loss.

In this work, we design our dense labeling framework
based on the approaches of superpixel-based segmentation and
unsupervised feature learning with GAN. We can extract the
deep semantic features from our large-scale satellite imagery
and generate a set of high-quality synthetic data simultane-
ously. The computation efficiency in the pixel labeling stage
is fully considered, and we are able to obtain very competitive
classification results compared to the state-of-the-art methods.

III. DENSE LABELING FRAMEWORK

We aim to label all the pixels on the large-scale VHR
images with a small amount of the ground-truth data. The
labeling categories contain different terrain objects of the
human settlement and natural landscape, such as small houses,
large buildings, trees, waterbody, etc. The main steps of
our dense labeling framework can be summarized into the
following steps:

1) Training GAN with the dense sampling patches: We
densely crop the small subimages with the same patch
size from the whole image and feed them as the input to
the GAN. The CNN-based discriminator and generator
can be trained in an alternative unsupervised way until
a certain level of accuracy is reached.

2) Tessellating the image data into homogeneous super-
pixels: We tessellate the image data into irregular but
coherent regions, i.e. superpixels and then use them as
the foot stone of the labeling work. It is very helpful to
reduce the data processing complexity and even improve
the prediction accuracy near the object boundaries.

3) Extracting the superpixel features with the GAN discrim-
inator: We crop the patches from the center of each
superpixel and adopt the GAN discriminator as a fea-
ture extractor to generate representational features from
them. Usually these centralized patches can provide
the most useful information for distinguishing different
categories.

4) Training the classifier to label the pixels based on the
segmentation hierarchy: A robust supervised or semi-
supervised classifier can learn from the limited ground-
truth training data and accurately assign the label to
the superpixels. We percolate down the superpixel-wise
labels through the segmentation hierarchy, so the pixels
inside the same superpixel will finally get the same label.
In this way, we can avoid directly labeling the huge
amount of pixels and thus improve the computational
efficiency of the framework.



We provide the details of the implementation approaches for
the first three steps in the following subsections.

A. Unsupervised GAN Architectures
We adopt the CNN-based GAN in our framework since it

has been proved more effective for the image data in computer
vision tasks [11], [12]. Its architecture mainly involve two
models—generator and discriminator, which are denoted as
G and D respectively:
• The generator G is used to learn the distribution over

the real image data xr, so it can generate the fake
samples xg = G(z; θg) by mapping the input noise
variable z to the data space, where z obeys a prior
noise distribution pz(z) and θg represents the multi-layer
perceptron parameters of G.

• The discriminator D, as the adversary of G, is developed
to distinguish between the samples drawn from the real
data xr and the fake data xg . It is able to produce the
probability score of a sample x as D(x; θd), where θd
represent the multi-layer perceptron parameters of D, so
the score can indicate how similar the sample looks to be
drawn from the real data xr.

These two models are always trained in an alternative way.
When we train D, the weights of G are fixed. We need to
maximize the score of D(x) for the real image and minimize
the score for the fake image simultaneously. When we train G,
we need to fix the weights of D, so that the score of D(G(z))
can be minimized to fool D. Therefore, the objective function
of GAN is written as:

min
G

max
D

Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

(1)
In an ideal case, we can expect this contesting game between
the G and D will be finished with a win-win situation where
G is able to generate “realistic” fake samples and D is capable
of perceiving the small difference between the fake and real
samples. The sensitivity of the D is also helpful for us to
extract discriminating features for the terrain objects, since
the visual difference occurs at colors, texture, shapes and etc.
It is very useful for us to accurately distinguish the common
terrain categories and even the similar-looking objects.

Like the other existing CNN-based models [13], [14], the
GAN in our framework also requires huge amount of image
data to train the large number of parameters in its architectures.
However, as the Eq. 1 shows, the learning process of GAN
is unsupervised, so providing the label information of the
ground-truth images is not as necessary as the other models.
Since the entire image is always available during the training
and its large-scale area contains rich information of the terrain
objects, we can therefore crop an adequate number of image
patches in a dense sampling way and use them as the training
set of our GAN. Fig. 2 shows a toy example of the training
pipeline for the GAN model in our framework.

B. Superpixel Tessellation
We adopt the ultrametric contour map (UCM) [15] to

produce the tessellation of the image data. This approach
has been widely applied to many image applications such as
segmentation, classification and object recognition. It is able to
provide high-quality closed contours with the state-of-the-art
performance. The regions surrounded by these contours form
the homogeneous superpixels, as it shown in Fig. 3.

The major steps of UCM superpixel estimation include
extracting the local and global contour information:
• The local information is obtained from the multi-scale

features, such as brightness, color, texture and etc.
These local cues are linearly combined into an oriented
value to measure boundary strength, i.e. mPb(x, y, θ) =∑
s

∑
i wi,sGi,s(x, y, θ), where {wi,s} is a set of weights

depending on the channels and scales indexed by i and
s, and Gi,s(x, y, θ) is a filter to compute the histogram
difference between the two semi-circular areas centered
at (x, y) with the angle of θ.

• The global information, or the complementary spectral
information, is obtained from the sum of gradient values,
i.e. sPb(x, y, θ) =

∑
k=1

1√
λk
· ∇θek(x, y), where λk is

the eigenvalue for rescaling and ek(x, y) is the eigen-
vector of a neighboring weighted graph [15] constructed
from maxθmPb(x, y, θ).

Then we linearly combine these cues obtained from the
original image and the eigenvector images into a globalized
probability score to indicate the strength of boundary at (x, y)
in the direction of θ:

gPb(x, y, θ) =
∑
s

∑
i

αi,s ·mPb(x, y, θ)+βi,s · sPb(x, y, θ)

(2)
The global closed contours can be extracted after an oriented
watershed transform (OWT) algorithm [15] is applied. Note
that this perceptual grouping strategy is responsible for making
good superpixel segmentation. In Fig. 3, we can observe that
the areas with significant variation can be captured by smaller
superpixels, while the less variation usually results in larger
superpixels.

C. Superpixel Feature Extraction
As we described in Section III-A, D is able to produce

distinguishing features for different terrain objects when the
GAN is fed with an adequate number of diverse images and
trained with an optimal number of epochs. The output of the
final convolutional layer is flattened into a long vector and this
vector can be used as the feature of the input image.

In order to make an appropriate input for GAN, we need
to generate a rectangular patch for each irregular superpixel.
These patches must be representational since they need to
preserve the important side information (such as color, texture,
and shape of the objects) as much as possible. Therefore, an
intuitive way is to crop the patches from the center of the
superpixels, so we can minimize the noising effects from the
neighboring superpixels if they are belonged to the different
category.

We show these selected patches on the leftmost map of
Fig. 4. It can be seen that for the medium or large sized
superpixels, the patches can capture the most characteristic
areas of the superpixels, while for the small sized superpixels,
though the patches also cover additional areas belonged to the
neighborhood, however, these patches will not be affected too
much on the feature noises because they are mostly obtained
from the human buildings which attend to aggregate together
for social purposes. In fact, it is somehow helpful for the
classifier to learn the common structure from these additional
areas of the neighboring superpixels. Note that we also show
the rectangular patches for the training points, which are
plotted in different colors on the leftmost map of Fig. 4. They
are obtained from the provided pixel coordinates instead of the
center of the superpixels. It is helpful to maximize the diversity



Fig. 2: Illustration of the GAN training pipeline based on a simple dense-sampling strategy.

Fig. 3: OTW-UCM superpixel map of Fig. 1.

of the spatially neighboring training samples especially if they
belong to the same superpixel on the image.

IV. EXPERIMENTS

A. Experimental Settings
1) VHR Satellite Dataset: We evaluate our dense labeling

framework on the large-scale VHR satellite imagery. Our
dataset comprises of images collected from different sources,
having varying scales and belonged to three different geo-
graphical settings. In Table I, we show the detailed information
of these images, including their capture location, image size,
and major terrain categories. All of these images contain
millions of pixels with a resolution of 1 square meter, so the
actual area captured by these images approximately ranges
between 1 to 4 square kilometers of the earth surface.

In addition to the major categories that we have listed in the
table, there is also a set of diverse regions such as lawn and
grass fields, sea sand along the shores, water bodies, farming
areas and etc. Thus we plus these additional categories to the
major terrain categories for each image and we believe this is
necessary for an accurate and a comprehensive analysis of our
framework.

Fig. 8a shows the ground-truth map of Fig. 1. Different
to the limited expert-labeled points that we use for training
the superpixel classifier, this map is only used for purpose of
accuracy evaluation. In order to eliminate the ambiguity of the
pixels located in the mixed regions (e.g. sea and sand) or the

junction of two areas, we label each pixel with one or more
categories—as long as we assign any one kind of the ground-
truth categories to the pixel, it is considered as the correct
classification. We name this kind of map as soft ground-truth
map in the following context.

2) GAN Implementation: As Fig. 2 shows, we need to
densely sample the rectangular patches from the whole image
to train our GAN. In order to guarantee the diversity of
these training patches, all the terrain categories should involve
no matter a terrain object is fully or partially included. To
this end, we crop 10, 000 patches from each image with the
same spacing distance and we allow the overlapping of the
neighboring patches if the height or width of the actual image
is not large enough.

Moreover, we need to set a reasonable value to the cropping
patch size, because we may lose the local feature (like the
color distribution) of the terrain objects if the patches are too
large and the global information (like the object shape and
texture) if the patches are too small. Usually, it depends on
the resolution of the actual satellite imagery. In our case, the
patch cropping size is 64× 64 and we resize it to 256× 256
by the bicubic interpolation method so as to match the input
of the GAN.

We follow the architectures in the work of [12] and im-
plemented on TensorLayer [16]. The main advantage is that
it can generate diverse fake images (with high resolution) by
adding a feature matching loss to the Eq. 1, i.e.∥∥Ex∼pr(x)f(x)− Ez∼pz(z)f(G(z))

∥∥2
2

(3)

where f(x) represents the activations on the last three layers
of D. It avoids suffering from the mode collapse issues [17]
in the training process, and leads to an equilibrium between
the learning rate of G and D—otherwise, D may easily get
too strong and make G collapse before learning the real data
distribution like [11].

After the GAN is trained, we feed the centralized patches
(as Section III-C described) to D and extract the flattened
superpixel features from the multi-feature layer. A linear SVM
classifier is trained with the limited expert-labeled points in the
final step of our framework, because it can often yield better
classification results than the original CNN architectures [18].



Fig. 4: Illustration of the feature extraction, superpixel classification and pixel labeling steps. A hierarchical labeling method
is used at the final step—all the pixels inside the superpixel S will share the label of S that is assigned by the classifier.

TABLE I: Detailed information of the satellite imagery, including the captured location, image size (height and width), major
terrain categories and the number of expert-labeled points as the training data.

Image Captured Location Size (pixels) Major Terrain Categories Expert-Labeled Points (#)
Rio-1,2,3,4,5 Rio, Brazil 741× 1, 491 Slum, Urban, Forest 30, 50, 40, 40, 40

Madison Wisconsin, USA 1, 807× 2, 062 Downtown, Residential 40
Milwaukee 2, 184× 2, 600 30

Detroit Michigan, USA 1, 648× 2, 305 Commercial, Residential 40

B. Experimental Results
1) GAN Evaluation: We evaluate our GAN on Fig. 1 and

show the performance of its G and D. Examples of the dense-
sampling patches are shown in Fig. 5a. The details of the G
and D loss are plotted in Fig. 6.

From Fig. 6, we can see both of the curves keep vibrating
but they generally move along a stable value—neither G or
D loss increases rapidly because the other one becomes too
strong. At the beginning, the D loss significantly drops since
G(z; θg) have not learned any high-level patterns and D can
easily distinguish these noising fake images. After that, G
catches up with the learning rate of D and compete with D
in an approximately equal strength. Subsequently, D becomes
slightly stronger and the D loss is slowly approaching zero.

To further evaluate the generating ability of G, we fix the
random z to produce the fake image patches with the G models
that are trained with different number of epochs. These patches
are shown in Fig. 5b, 5c and 5d. When the number of epochs
is small, G only generates some random patterns or learns a
few low-level features similar to artificial defects. When the
number becomes large, the patches look more “realistic” and
more difficult for human to tell the difference from the real
patches.

Furthermore, we test the representational ability of the D
features with different number of the training epochs. Fig.
7 shows the pixel-based classification accuracies evaluated
on Fig. 1. We can observe that the accuracy significantly
improves within 20 training epochs. It is consistent with the
epoch number that G can generate a batch of reasonable
fake samples. Then the accuracy curve fluctuates in a small
range around 90%. Generally, it shows the effectiveness of
the D features since it can achieves very high accuracy of the
pixel labeling, and more evaluation will be conducted on the
remaining VHR images in Section IV-B2.

2) Classification Evaluation : We compare our GAN label-
ing framework against the GMIL algorithm [2] and three other
approaches based on heuristic descriptors [4], [19] (denoted
as SMLA), sparse auto-encoder features [9] (denoted as SAE)

TABLE II: Pixel-based classification accuracies (%) for the
VHR images from Brazil and USA. Rio-2 is selected as the
example in Fig. 1 because it contains the maximum number
of the different categories. The last row shows the average
accuracy value of each method over all the images.

Images GMIL SAE SMLA TL-VGG GAN
Rio-1 77.30 68.62 83.32 88.52 86.66
Rio-2 75.83 70.22 88.65 87.66 92.33
Rio-3 68.27 63.23 88.49 86.11 87.72
Rio-4 72.06 58.44 87.83 92.32 87.81
Rio-5 65.35 68.49 85.90 91.20 91.49

Madison 69.01 66.81 85.66 84.89 83.64
Milwaukee 84.45 57.48 76.00 78.08 74.20

Detroit 69.01 65.01 66.85 83.02 81.98
AVERAGE 72.66 64.79 82.84 86.47 85.73

and transfer learning techniques [8] with VGG-16 model [13]
(denoted as TL-VGG). These methods have showed good
improvement over the standard classification schemes. We
show their classification results in Fig. 8.

From Fig. 8, we can observe that the results of GAN and
TL-VGG look much better than GMIL and SAE. It indicates
the great advantage of using CNN architectures in the unsu-
pervised feature learning models. In Table II, we report the
classification accuracies on the whole VHR satellite imagery.
The classification results of the exemplary VHR images based
on our GAN labeling framework are shown in Fig. 9 and 10.
Similar to the results in Fig. 8, our GAN and TL-VGG achieve
higher average accuracy values than the other approaches.
Note that the geographical coordinate of Milwaukee is a
dominant factor to distinguish the small and large buildings
and thus this image becomes quite advantageous to the GMIL.

Note that SMLA is the most similar approach to our
GAN labeling framework, because the features are directly



(a) Real image data (b) Fake image data from G (epoch = 1)

(c) Fake image data from G (epoch = 10) (d) Fake image data from G (epoch = 100)

Fig. 5: Example of the representational images. (a) 12 patches sampled from the real image. (b)(c)(d) 12 fake patches generated
from G with different number of training epochs.
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Fig. 6: Details of the loss of D and G that are trained with
the image data from Fig. 1. Note that the learning ability of D
and G cannot be directly compared by the numerical values.
One additional term of Eq. 3 is counted toward the G loss.
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Fig. 7: Classification accuracies (%) of using D in the dense
labeling work for Fig. 1. The D models are trained with
different number of epochs and then employed to extract the
superpixel features for the subsequent SVM.

but manually generated by the experienced researchers from
the remote sensing field. These features include intensity
histogram, corner density, texton descriptors [4]. The perfor-
mance of SMLA is quite competitive to our GAN method on
the VHR images, but GAN works much better on the image
like Detroit, where the whole image color shifts to green and
it thus significantly affects the discriminating ability of the
heuristic features. More than 15% accuracy difference can
be observed in such situation and it demonstrates the GAN
approach is more robust to the color shift.

Furthermore, although TL-VGG can beat our GAN method
on 5 of 8 images, however, it is not an “completely” un-
supervised approach like GAN, because its powerful CNN
model is pre-trained from the large benchmark dataset [20] in a
supervised way. The CNN model is always more complicated
than D and requires to train on a huge number of labeled
images with similar visual patterns to our terrain objects.
This constraint can sometimes make it hard for establishing
a transferable CNN model since it never learns the specific
information from the current image base. A good example is
that GAN significantly outperforms TL-VGG on Rio-2 even
though the its architecture is much simpler than the VGG-16
model [13] in TL-VGG method.

We finally integrate the approaches of our GAN and TL-
VGG into one framework (denoted as GAN-VGG), since they
can learn the features in very different ways. A reasonable
combination can result in a stronger discriminating ability. We
train the SVM classifiers of GAN and TL-VGG separately
and then take the average of the output probability scores.
Each superpixel is labeled with the category that has the the
maximum score. It is like we employ two experts and make
them vote for the final classification results. Fig. 11 shows the
labeling accuracies of these three frameworks. We can see that
GAN-VGG always outperforms the other two approaches and
it has an average of 3% improvement for each VHR image.
It demonstrates that GAN can make important contribution to
the labeling work. The high-level features learned by GAN
and VGG are complementary to each other.

V. CONCLUSION

In this paper, we have presented an effective machine learn-
ing framework to densely label the pixels in large-scale satel-
lite images. Superpixel segmentation can help us overcome the



(a) Soft Ground-truth Map (b) GMIL [2] (c) SAE [9]

(d) SMLA [4] (e) TL-VGG [8] (f) GAN

Fig. 8: Classification results of Fig. 1 using different approaches. Different colors are used to present the various terrain
categories, i.e. red, white, green, yellow, and blue for slum, urban, forest, sand and sea respectively.

Fig. 9: Example results for the images from Brazil. The left, middle, and right column, respectively, correspond to the actual
image, soft ground-truth maps, and SVM classification results. Different colors such as red, white, green, yellow, brown and
blue are used to identify the slum regions, urban regions, forests (or large trees), beach sand, farm fields and sea.

big problem of the lack of available ground-truth data with
the discriminator in a generative adversarial network (GAN)
able to extract the representational features for the subsequent
classification. In sharp contrast to previous work, we are able
to learn the high-level features in a completely unsupervised
way based on the GAN. A simple dense-sampling strategy can
provide an adequate amount of unlabeled data for training.
We also combine the discriminating abilities of the GAN and
the pre-trained CNN model in our labeling framework. We
observe a further 3% improvement of pixel-based accuracy in
the experiments. In future work, we will focus on improving
the realism of fake samples so as to create a comprehensive
synthetic dataset. Based on the success of this work, we think
it will be helpful for training remote sensing models in other
studies, thereby avoiding the need for time consuming and
expensive annotations.
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